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5.5 Verification and validation/error estimation 

In order to get reliable numerical results calculation models and methods need to be verified against 
experimental data. In practice, first the reliability of the applied loading should be checked. Special 
attention should be paid in defining loading transients for near-field explosions. When the air is 
treated as a diatomic ideal gas, the assumption underestimates the reflected pressure. 
 
Additionally strain rate-dependent material parameters are needed in order to simulate the material 
properties realistically. In many cases the assumed failure criteria is of crucial importance. 
 
Verification/validation and error estimation is an important objective of all numerical simulations. In 
order to define a level of prediction of a numerical simulation, CEA (Commissariat à l’énergie 
atomique) developed a process called STANDARD V0.A (CEA). This procedure describes a way to 
validate each step of a simulation process in the field of weapon effects on structures. This 
procedure is based on the analysis and simulation of different explosive configurations (UFC, 2008; 
Baker, 1973; Kinney et al., 1985). Specific tests have been done in the past and have been used to 
evaluate simulation quality. 
Each stage of a phenomenon is analysed: 
 

 Detonation process; 

 Blast wave propagation; 

 Interaction with structure; 
 

This document focuses especially on blast-wave generation and propagation to the structure but the 
way to analyse blast-wave validation can be transposed to the structure, too. 
 
For each step, specific variables are checked. The principle variables are: 
 

 Peak pressure of incident blast wave; 

 Arrival time of blast wave; 

 Positive impulse of incident pressure; 

 Peak pressure of reflected blast wave; 

 Positive impulse of reflected blast wave; 
 
For each experiment, pressure sensors are located at different distances and duplicated at the same 
position in order to estimate the uncertainty of the measurement.  

For specific experimental configuration (3D configuration) pressure sensors should be placed around 
the explosive in order to evaluate the shape of blast-wave propagation. Examples of sensors 
deployment are shown in Figures 37 and 38. 
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Figure 37: Typical experimental configuration for spherical charge detonation 

 

 
 

Figure 38: Typical experimental configuration for cylindrical charge detonation 
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The relative deviation of the simulated value of each specific variable (Ta, Pi, etc.) is obtained by the 
following formulas: 
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where, V = Simulation variable value 

VExp_moy = Mean arithmetic experimental value 
Vi  = Experimental value 
Ntest = Number of same test measurements 

 
The simulation process of blast-wave propagation is considered as satisfactorily simulated when each 
specific variable is calculated with a difference from Vexp,Moy of less than 5 % (when the scattering 
experimental value is less than 10 %). 

To reach this validation process, different parameters should be used. 

 

 Equation of state for explosive and air modelling; 

 Mesh size; 

 Numerical parameter (pseudo-viscosity); 

 etc. 
 

A convergence criterion is used to define the minimum size x of the elements during the simulation 

process. Based on the literature, a specific mesh size xref has been defined to simulate blast-wave 
propagation generated by detonating a reference mass of Mref=175.5 kg spherical charge (ambient 
condition: 1.013 bars, 20 °C). 
 

3

Mref

M
xx ref                                                          (5.5-3) 

 
Similitude formulas (specific for a spherical charge) are used for the reduction of the experimental 
and simulation data and for plotting them in the same graph: 

 

3/1M

D
Z 

                                                             (5.5-4) 
 
with Z =  Scaled (or normalised) distance (m/kg1/3) 
 D = Stand-off distance (m) 
 M = Explosive weight (kg) 
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Figure 39: Variables Ta (arrival time), Pso (peak side-on incident pressure) and Iso (incident impulse) as 
functions of normalised distance 

 

 

Figure 40: Variables Ta, Pso and Iso as functions of the normalised distance, spherical charge with 175 and 1 kg 
of TNT 
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The similitude law produces equations for the several variables, which written for ambient pressure, 
are: 
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A relevant graph from the available empirical analytical relationships (UFC, 2008) is given in Figure 
39. Thanks to this methodology, it is possible to represent different explosive masses if the mesh size 
follows Equation 5.5-3. As an example and for comparison purposes, results of simulations with 
175 kg and 1 kg of TNT spherical charges are presented in Figure 40. 
 
All the above procedures have been applied in (CEA), defining a matrix of limit values for simulation 
validity in a specific configuration: 
 

Table 7: Matrix of simulation validity for a specific blast configuration 

Configurations Time Pressure Impulse 

Aerial explosion of spherical charge 

abacus(1) 

±5 % ±18 % ±15 % 

Aerial explosion of hemispherical charge 

CEA GRAMAT Test(1) 

±4 % ±11 % ±13 % 

Aerial explosion of cylindrical charge (1) ±4 % ±11 % ±13 % 

Aerial explosion of spherical charge and Mach 

stem (2) 

±4 % ±11 % ±13 % 

Internal explosion of spherical charge(2) ±4 % ±20 % ±15 % 

Global criterion ±5 % ±20 % ±15 % 

(1)Incident blast wave:    Time=Ta;  Pressure=Pso  and  Impulse=Iso 

(2)Reflected blast wave:  Time=Tr;  Pressure=Pr  and  Impulse=Ir 
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After the blast-wave simulation process, it is necessary to evaluate the response of the structure and 
the corresponding error. The same protocol should be applied, based on the definition of the specific 
variable representing structural deformation. Typical parameters to be considered are: 
 

 Displacement; 

 Maximum stress and strain; 

 Failure. 
 
Defining the critical pressure for a specific structure leads to defining the critical distance at which 
the structure will not survive. Based on the analysis described before, it is possible to determine the 
critical position of an explosive with an error bar indicating the level of confidence in the simulation. 
An application on structural vulnerability is shown in Figure 41. 
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Figure 41: Influence of simulation restitution on vulnerability distance 
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