RAPID-N: Assessing and mapping the risk of natural-hazard impact at industrial installations

Serkan Girgin, Elisabeth Krausmann

European Commission
Joint Research Centre
Institute for the Protection and Security of the Citizen
Ispra, Italy

www.jrc.ec.europa.eu
Ecuadorean Amazon oil slick heads towards Peru
Crude discharged after pipeline was ruptured by landslide has entered Napo river

Hurricanes Destroyed 109 Oil Platforms: US Government
Oil Spill Into Verdigris River Adds to Kansas Flooding Problems as E
China quake hits chemical industry

Chemical leaks threaten Prague as floods hit Dresden
Natural hazard triggered technological accidents

- A natech accident is a chemical accident caused by a natural hazard.

- Particular characteristics:
 - Simultaneous hazardous-materials releases from multiple sources
 - Damage to prevention and mitigation systems including lifelines (e.g. water, power)
 - Complicated response
Natech Risk

- Natech risks are expected to **increase** due to:
 - **more hazards** (climate change, industrialization)
 - **higher vulnerability** (urbanization, interconnectedness)

... in a situation where Natech risk assessment methodologies & tools and guidelines for Natech risk management are missing.

Priority work areas*:

- Implement and enforce regulations for Natech risk reduction
- **Develop methods, tools and guidance for Natech risk management**
- Develop dedicated Natech emergency management plans
- **Develop Natech risk maps**
- Raise awareness and improve risk communication
- Train stakeholders on Natech risk reduction

JRC Activities

• Accident analysis and guidance
 • Site surveys for damage assessment (China, Japan)
 • Statistical analysis
 • Lessons learned and recommendations
 • Natech database: eNatech
 http://enatech.jrc.ec.europa.eu

• Risk analysis tools
 • Framework for natech risk assessment and mapping: RAPID-N
 http://rapidn.jrc.ec.europa.eu
RAPID-N: Rapid Natech Risk Mapping Framework

- Easy and quick data entry
- Rapid analysis
- Visualization
- Collaboration
- Cloud-based
- Modular architecture
 - Scientific Tools
 - Natural Hazards and Natechs
 - Facilities and Process Units
 - Risk Assessment
Natural Hazard

- Hazard Map
 - Probabilistic
 - Deterministic
- Manual Input
- Hazard Parameter Estimation Methods

Damage

- Site Data
- Process Unit Data
- Damage Probability
- Fragility Curves
- Historical Data
 - Hazard Parameters
 - Damage states
 - Consequences

Consequence

- Risk States
- Consequence Analysis
- Natech Risk
- Risk Receptor Data
 - Land-use
 - Population
Natural Hazard

Hazard Map
- Probabilistic
- Deterministic

Site Data

Natural Hazard Parameters

Manual Input

Hazard Parameter Estimation Methods

Natech Information

Hazard: Kocaeli Earthquake, Turkey, 1999/08/17
Facility: Turkish Petroleum Refineries Corp. (TUPRAS) Izmit Refinery, Turkey

On-site Hazard Parameters

European Macroseismic: Destructive
Horizontal peak ground acceleration: 0.25 g
Vertical peak ground acceleration: 0.2 g
Peak Ground Displacement: 40–60 cm

References
4. Demir, H.; Gorgun, M., "Marmara earthquake and TÜPRAS fire", 2005

Created: Serkan Girgin, 2011/10/16 15:48:13

Natech Damages

<table>
<thead>
<tr>
<th>No</th>
<th>Process Unit Type</th>
<th>Process Unit Properties</th>
<th>Damage Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Storage Tank</td>
<td>Storage Condition: Atmospheric, Roof Type: Floating Roof, Construction Material: Steel, Base Support Type: Unanchored</td>
<td>Seligson et al. (1996)</td>
</tr>
</tbody>
</table>
Damage Process Unit Data

Damage Probability

Fragility Curves

Historical Data
- Hazard Parameters
- Damage states
- Consequences

Fragility Curve Information

- **Name:** HAZUS, On-ground anchored steel tank
- **Process Unit Type:** Storage Tank
- **Damage Classification:** HAZUS (Water Storage Tanks)
- **Hazard Parameter:** Peak ground acceleration (PGA)
- **Unit:** %
- **Type:** Pre-defined
- **Functional Form:** Log-normal (median)

Conditions

- **Base Type:** On-ground
- **Base Support Type:** Anchored
- **Construction Material:** Steel

Data

<table>
<thead>
<tr>
<th>No</th>
<th>Damage State</th>
<th>Median</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>~ DS2</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>~ DS3</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>3</td>
<td>~ DS4</td>
<td>1.25</td>
<td>0.65</td>
</tr>
<tr>
<td>4</td>
<td>~ DS5</td>
<td>1.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

References

Fragility Curve

- Probability (%) vs. Peak ground acceleration (PGA)
Consequence Analysis

Risk States

Natech Risk

Risk Receptor Data
- Land-use
- Population

Risk Assessment Information

Name: Kocaeli Earthquake Single Plant
Date: 2012/08/28 13:11:13
Type: Private

Hazard Information
- Hazard: Kocaeli Earthquake, 1999/08/17
- Hazard Map: ShakeMap (XML, Gridded), 2008/11/09 03:19:14

Facility Information
- Facility: Kocaeli, Turkey: Power Plant, Turkey

Damage Estimation
- Damage Classification: Auto
- Flexible fragility curve selection: Yes

Facilities

1. Kocaeli, Turkey: Power Plant, Turkey

<table>
<thead>
<tr>
<th>No</th>
<th>Process Unit</th>
<th>Hazard Parameters</th>
<th>Fraility Curve</th>
<th>Damage Estimate</th>
<th>Damage Parameters</th>
<th>End-point Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Storage Tank (T-STR) [gasoline]</td>
<td>PGA: 16.777 m/s²; BMS: Slightly damaging; MM: Strong; MSK: Strong; NM: 6.4866; Ge: 101.29 km; Gd: 102.79 km; PdA: 74.415 cm/s²; PGV: 15.972 cm/s</td>
<td>OS00-F50-0</td>
<td>≥ D5: 4.0546%</td>
<td>Fire/Explosion Event: Vapor Cloud Explosion; ξ: 4250 kg; η: 10%; V: 3.7432 m/s; D: 342 TDU; Q: 270.56 m³; Qmax: 4250 kg; Pu: 6146.1 ft²; Pou: 3 cm Release, r: 425 kg/m²; T: 1 R: 0.4; Qe: 5000 W/m²; Tavg: 40 s; Dv: 342 TDU</td>
<td>271 m: 4.0546%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≥ D3: 0.004531%</td>
<td>Fire/Explosion Event: Vapor Cloud Explosion; ξ: 8500 kg</td>
<td>341 m: 0.004531%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≥ D4: Very low</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Property Estimation Framework

<table>
<thead>
<tr>
<th>Description</th>
<th>Estimator</th>
<th>Unit</th>
<th>Validity conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default ambient temperature</td>
<td>25</td>
<td>°C</td>
<td>–</td>
</tr>
<tr>
<td>Wind speed</td>
<td></td>
<td>m/s</td>
<td>RMP Scenario = Worst-case</td>
</tr>
<tr>
<td>H/D ratio from diameter</td>
<td></td>
<td>m/m</td>
<td>Shape = Spherical</td>
</tr>
<tr>
<td>Storage condition from roof type</td>
<td></td>
<td>–</td>
<td>Roof Type = Floating Roof</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>Roof Type = Internal Floating Roof</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>Roof Type = Open Roof</td>
</tr>
<tr>
<td>Diameter from volume</td>
<td></td>
<td>m</td>
<td>Shape = Spherical</td>
</tr>
<tr>
<td>Energy magnitude from radiated seismic energy</td>
<td></td>
<td>–</td>
<td>Region = Western U.S.A.</td>
</tr>
<tr>
<td>Peak ground acceleration</td>
<td></td>
<td>–</td>
<td>Fire/Explosion Event = BLEVE</td>
</tr>
<tr>
<td>U.S. EPA RMP Liquid Factor Boiling</td>
<td></td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Duration of fireball</td>
<td></td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

Properties

- **Storage Condition:** Atmospheric
- **Shape:** Cylindrical Vertical
- **Roof Type:** Floating Roof
- **Construction Material:** Steel
- **Volume:** 22285 m³
- **Height:** 14.00 m
- **Diameter:** 147.64 ft (45.00 m)
- **H/D Ratio:** 0.3114 m/m
- **Fill Level:** 85 %v

```latex
\text{return } 2.6 \times \text{pow}(\text{QFL:kg}, 1/6);
```
Status and Data Availability

- Currently implemented for earthquakes and fixed installations
- \(\sim 20,000 \) earthquakes (> M 5.5)
- > 52,500 earthquake catalog data
- \(\sim 10,000 \) shakemaps
- > 5,500 industrial facilities
 - Refineries
 - Power plants
- > 64,000 plant units
 - Storage tanks

- Complete implementation of U.S. EPA RMP Offsite Consequence Analysis methodology
- > 200 properties
- > 400 property estimators
Application Areas

- Rapid local and regional natech risk assessment
- Land-use and emergency planning
- Identification of neighboring infrastructures at risk
- Early warning
- Preliminary damage assessment
Example: Earthquake Case Study

- Istanbul Earthquake
- JICA (2002) Model A
- Mw 7.5
- Fault length 120 km
- Strike-slip
Industrial Facility

- Located in Izmit Bay
- Distance: 6.3 km
- PGA: 0.77 g
- PGV: 1.66 m/s
- MMI: 10
- 17 storage tanks

- Kerosene
- Acrylonitrile
Release of toxic substance

Impact area for 1-hr exposure without irreversible health effects
Ongoing and Future Research

- Extension to other natural hazards and infrastructures
- Automated natech damage and consequence estimation (Alert)
 - Reporting to interested parties and authorities
- Cascading (domino) effects
- Consideration of risk receptors
- Fragility curve creation tool
 - Statistical analysis of natech damage data
Thank you for your attention!

http://rapidn.jrc.ec.europa.eu

Contact
serkan.girgin@jrc.ec.europa.eu
elisabeth.krausmann@jrc.ec.europa.eu