DE LA RECHERCHE À L'INDUSTRIE

The French experience on nuclear detection architectures and related reachback

Ispra

28-30 March 2017

GICNT meeting

www.cea.fr

THE INTERACTION BETWEEN R&D SECURITY AND NUCLEAR INTERVENTION

Nuclear non proliferation

Support of the national et international authorities Development of detection tools of proliferation activities

Nuclear test monitoring

Development, exploitation of CTBT stations

Fight against Nuclear and Radiological terrorism

Intervention in case of radiological accident or incident on a weapon or nuclear propellant

R&D for global security : Detection and identification of CBRN-E agents, Cybersecurity, infrastructure security , ...

OBJECTIVES AND PRIORITIES OF CEA RESEARCH IN SECURITY

Reducing the CBRN-E threat

Bring a technical expertise to French public authorities (Defense, SGDSN,,...)

State the needs expressed by authorities in technologically focused research programs

Integration of new technologies in complex security systems

Contribute to improve the national CBRN-E response capacities

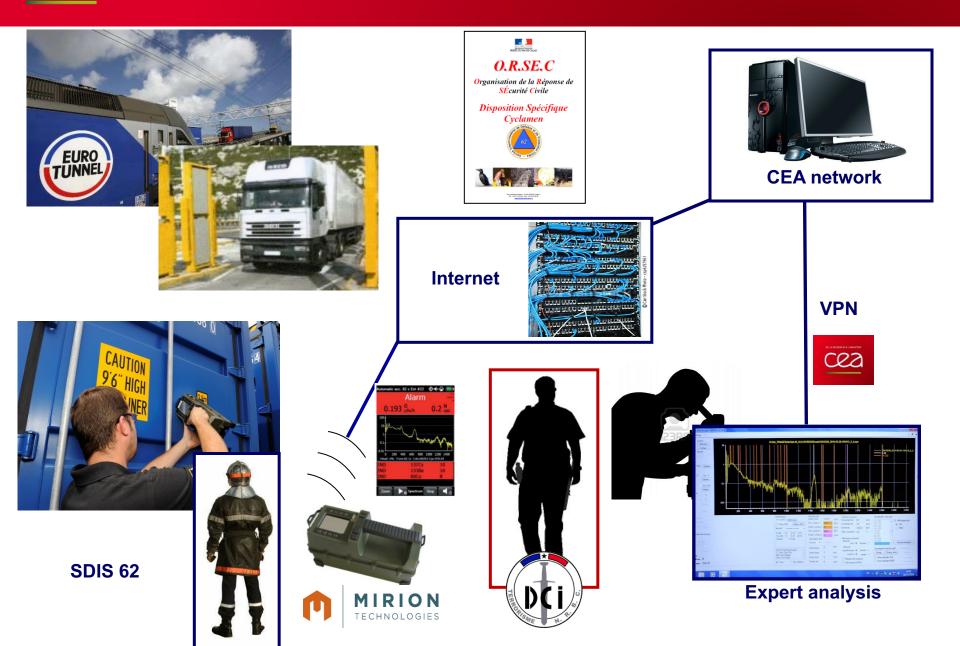
GASGDSN

MINISTÈRE

Triage: Eurotunnel securization

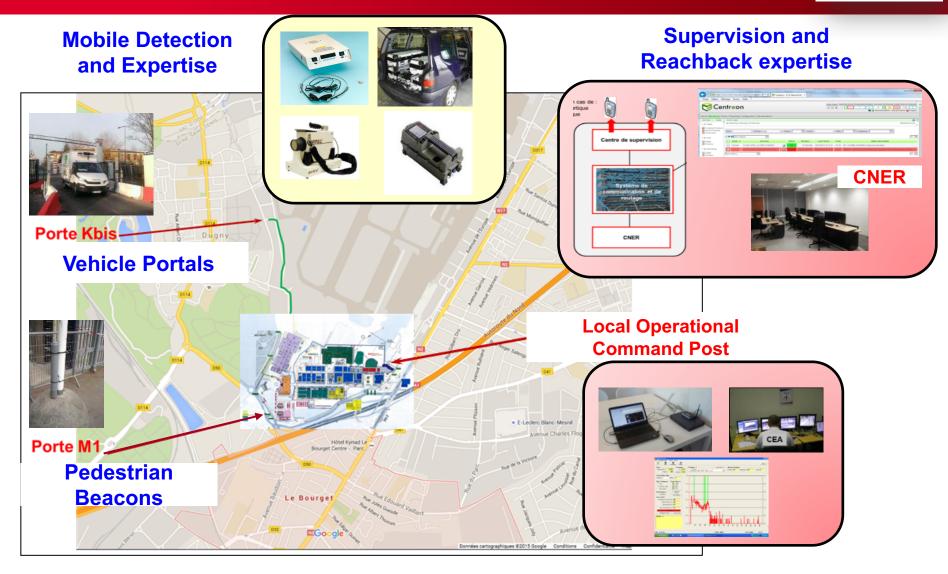
Securization of great events

Nuclear detection architecture



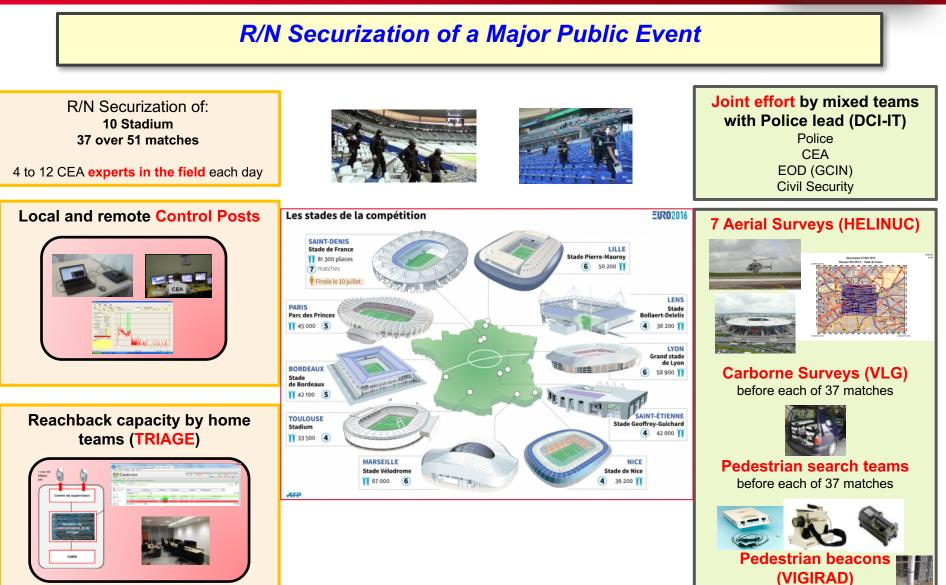
Future orientations on reachback

```
DE LA RECHERCHE À L'INDUSTRI
```



1. TRIAGE : EUROTUNNEL/CYCLAMEN

2. N/R SECURITY OF THE 2015 WORLD CLIMATE SUMMIT

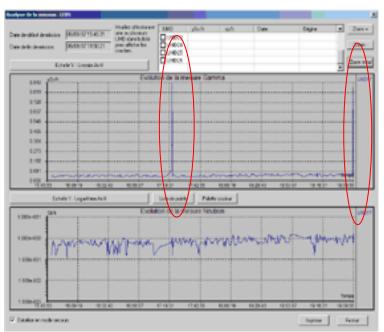


Activated from 19 November to 12 December – 25 CEA personal concerned

DE LA RECHERCHE À L'INDUST

2. EURO 2016 – 10th June to 10th July 2016

BEACONS ON STADIUM POINT OF ENTRY


- ✤ Gamma identification
- Neutron detection
- GPS / data transmission
- Local and/or distant alarm
- Reachback expertise of spectrum

DE LA RECHERCHE À L'INDUSTRIE

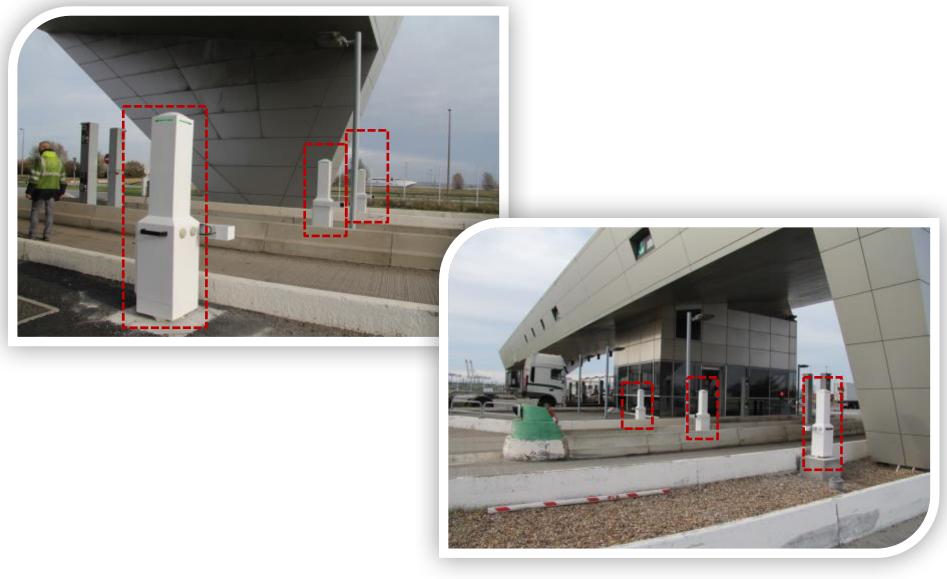
3. REDUCING THE CBRN-E THREAT IN CRITICAL INFRASTRUCTURES

Risk sizing

Sensor technologies

Integration - Supervision

REDAR: A R/N NATIONAL DETECTION ARCHITECTURE



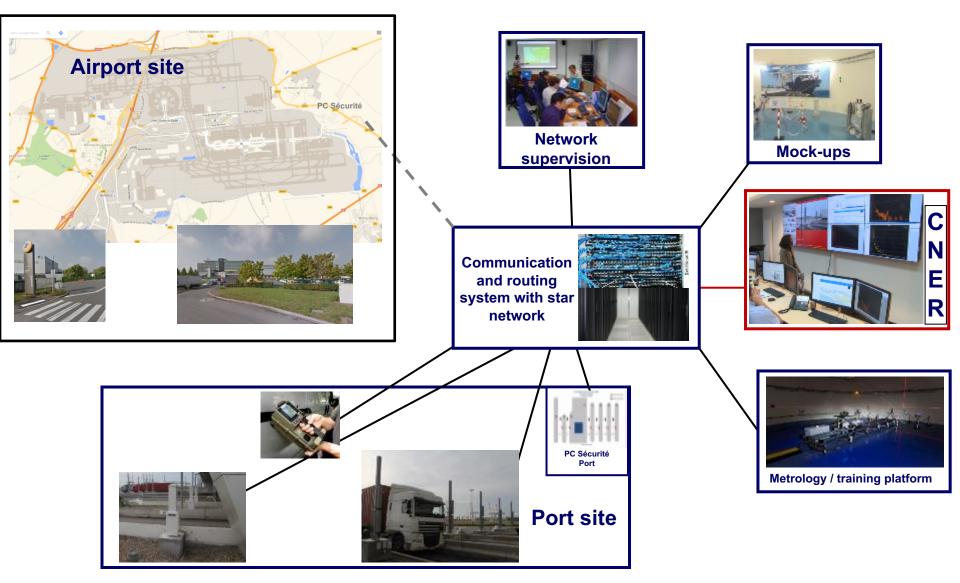
4 LANES TRUCKS EQUIPPED WITH IDENTIFICATION MODULES DETECTORS

2 LANES FOR LIGHT VEHICLES EQUIPPED WITH IDENTIFICATION BEACONS

LESSONS LEARNED

20 000 vehicles per week (900,000 over 10 months) :

- ♦ ~ 15 events/day identified as natural → No alarm
- ± 1 to 2 events identified as in vivo medical per month→ No alarm
- ✤ ± 1 or 2 alarms per month requiring confirmation


Fully automated >No human decision Automated rejection

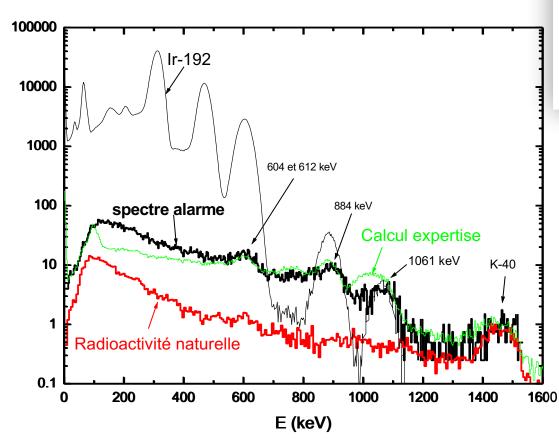
WHAT IS THE COMMON POINT BETWEEN THE SECURIZA-TION OF A MAJOR PUBLIC EVENT AND A NUCLEAR DETECTION ARCHITECTURE?

Reachback: The French National Center for Radiological Expertise (CNER) located at CEA premises

AN ARCHITECTURE COHERENT WITH THE NETWORK DEVELOPED AT THE CEA

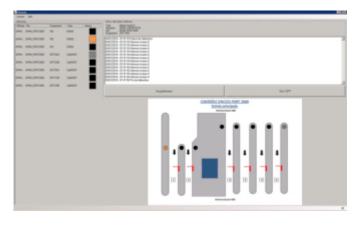
RETEX : EXPERTISE AND ASSISTANCE FOR 1st RESPONDERS

Detection (alarm) on passing heavy vehicle


Day: dd/mm/2016 at 00.10

imp/s

No automatic identification


Expertise advice: ¹⁹²Ir + biological protection (screening)

(Non-destructive test?)

Port Safety Service information

WHAT TO DO TO PROMOTE NATIONAL NUCLEAR DETECTION ARCHITECTURES?

Proposing minimal guidances

Based on different combinations of equipment: different levels of response quality

	Technology 0	Technology 1	Technology 2	Technology 3
Primary	Handheld pager			
Secondary	Handheld spectrometer			
Investment cost	Low			
Manpower	Low			
False alarm rate at 1st	Low			
Local qualification	Low			

	Technology 0	Technology 1	Technology 2	Technology 3
Primary	Handheld pager	Plastic portal		
Secondary	Handheld spectrometer	Handheld spectrometer (low throughput)		
Investment cost	Low	Low		
Manpower	Low	Medium to high		
False alarm rate at 1st	Low	Medium to high		
Local qualification	Low	Low		

	Technology 0	Technology 1	Technology 2	Technology 3
Primary	Handheld pager	Plastic portal	Plastic portal	
Secondary	Handheld spectrometer	Handheld spectrometer (low throughput)	Nal portal (throughput)	
Investment cost	Low	Low	Low to medium	
Manpower	Low	Medium to high	Medium to high	
False alarm rate at 1st	Low	Medium to high	Medium to high	
Local qualification	Low	Low	Low	

	Technology 0	Technology 1	Technology 2	Technology 3
Primary	Handheld pager	Plastic portal	Plastic portal	Nal spectroscopic beacon
Secondary	Handheld spectrometer	Handheld spectrometer (low throughput)	Nal portal (throughput)	Handheld spectrometer
Investment cost	Low	Low	Low to medium	Medium
Manpower	Low	Medium to high	Medium to high	Low
False alarm rate at 1st	Low	Medium to high	Medium to high	Low
Local qualification	Low	Low	Low	Medium

WHAT TO DO TO PROMOTE NATIONAL NUCLEAR DETECTION ARCHITECTURES?

Proposing minimal guidances: points to be discussed

- Based on different combinations of equipment: different sets of balance
- Communication & monitoring network
 - Minimum (electronic communication to reachback for low throughput)
 - Definition of procedures
 - Beyond
 - ICT secured network (VPN,...)
 - Connexion to reachback
- Defining mission and tools for the security officers (not in charge of secondary inspection)
- Defining mission and tools for the secondary inspection team

Reachback (if available in the MS)

- Transmission of field data (availability, integrity, trustworthyness,..)
- Dedicated tools of expertise (IAEA references)
- Minimum tools to engage legal action and prosecution

Beyond

- Experts qualification and availability
- Database of reference spectra

A priority: disseminate the concept(s) towards EU member states

- Attract: Detect 90% threats is better than 0%
- Simplify: Determine minimal guidelines to operate an architecture and a reachback center
- <u>Responsabilize:</u> Work with JRC, IAEA and organizations (GICNT, BMWG,...) to promote this concept
- Write and exchange: NST 59 (NSS 1) and next workshops
 - Be careful with standards: make appropriate use...