

2ND IMPROVER / ERNCIP WORKSHOP

IMPROVED RISK EVALUATION AND IMPLEMENTATION OF RESILIENCE CONCEPTS TO CRITICAL INFRASTRUCTURE

David Lange, RISE Research Institutes of Sweden david.lange@ri.se

www.improverproject.eu

@improverproject

Assessment of critical infrastructure resilience

- There are several national definitions of CI Resilience in Europe
- There is no EU definition of the term.
- Most official European documents refer to societal resilience
 - e.g. EU Strategy for Supporting Disaster Risk Reduction in Developing Countries
- Relatively small body of work focussing on implementation of resilience to infrastructure:
 - Argonne laboratories RMI
 - AIIC Guidelines for critical infrastructure resilience evaluation
 - Hollnagels Resilience Assessment Grid
- All rely on a summation of different levels of indicators

Analysing resilience (1)

 Guidelines for critical infrastructures resilience evaluation (AIIC)

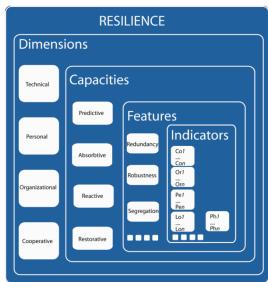
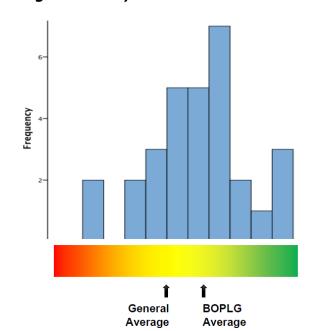
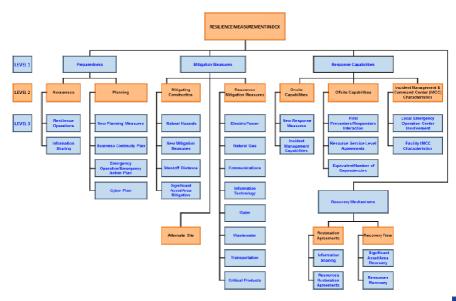



Figure 5. Hierarchical Representation of the Infrastructure Resilience Model
Indicators are presented in the Part II.

Benchmark Resilience Tool (Resilient Organisations)

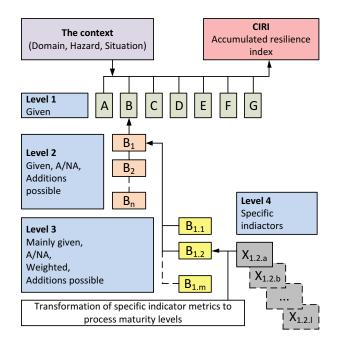


Analysing resilience (2)

 Resilience Measurement Index and Infrastructure Survey Tool (Argonne) Resilience Measurement Index Structure

Measuring resilience (3)

Resilience Assessment Grid



Critical Infrastructure Resilience Index (IMPROVER)

- Level 1 the crisis management cycle
- Level 2 generic indicators
- Level 3 given, measureable indicators
 - Technological
 - Organisational
 - ..
- Level 4 Sector / application specific, measurable indicators

- Cobit
 - 1. Non-existing
 - 2. Initial / ad-hoc
 - 3. Repeatable but intuitive
 - 4. Defined process
 - 5. Managed and measurable
 - 6. Optimised

Measured / Calculated

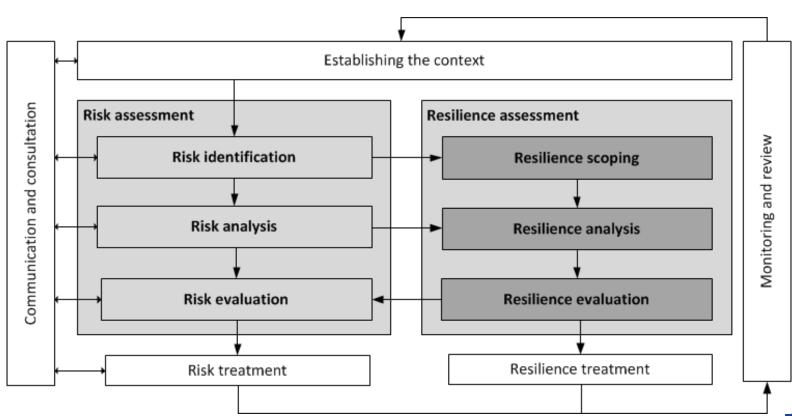
Discussion

- The intended use of these methodologies varies significantly
 - Comparison against similar infrastructures or organisations
 - Measuring the resilience of a single asset
 - Monitoring resilience over time
- Radar charts
- Maturity scales

IMPROVER Framework

The successful implementation of the concept of resilience to CI relies on its successful integration in existing security activities; including the risk assessments at a CI operator, a system and a national (or regional) level.

- We propose a general framework for resilience assessment of CI, which remains compatible with the current guidelines for the MS
- Integrates the paradigm of resilience into the RA process according to ISO 31000
- Consists of three levels, namely the
 - (a) asset (focus on individual CI assets),
 - (b) system (focus on dependencies between CI assets) and
 - (c) national or regional (focus on societal aspects) levels
- Outputs risk and resilience treatment plans on both an asset and a system level
- Flexible neither domain or analysis methodology dependent



Definitions

- Starting from definitions used in ISO 31000 for RA we map these to resilience:
 - Resilience analysis is the process to comprehend and to determine the level of resilience, based on selected resilience indicators
 - Resilience evaluation is the process of comparing the results of resilience analysis with criteria or objectives to determine whether resilience level is acceptable and identify areas for improvement
 - Resilience assessment is the overall process of resilience analysis and evaluation
 - Resilience treatment is the process to modify resilience, focusing on the absorptive, adaptive or restorative capacity
 - Resilience management comprises coordinated activities to direct and control an organisation with regard to its resilience, including the above processes

David Lange, RISE Research Institutes of Sweden david.lange@ri.se

