

> POLITECNICO DI MILANO

2nd ERNCIP Conference

"Dissemination, Exploitation and New Initiatives"

April 16nd and 17th, 2015

European Commission Charlemagne Building, JENK Room Rue de la Loi 170, 1040 Brussels

Joint Research Centre

Dynamic Functional Modelling of Vulnerability and Interdependency in Critical Infrastructures (DMCI)

Prof. Paolo Trucco, PhD

Department of Management, Economics and Industrial Engineering Politecnico di Milano, Italy

- Modelling and simulation of interdependent CI systems
- DMCI modelling approach and capabilities
- DMCI modular implementation and SW tool
- DMCI application in the context of a Regional CIP-R programme
- Conclusions

Ouyang's state-of-the art review (2014)

Approach type	Sub-approach	Quantity of input data	Accessibility of input data	Types of interdependencies	Computation cost	Maturity	Resilience
Empirical Agent-based SD based		M, L L M, L	M S M	P, C, G, L P, C, G, L P, C, L	S L M	M L L	1.3,2.3, 2.4, 3.3 1.1, 1.2, 1.4, 1.6, 2.1, 2.5, 3.1, 3.3 1.6, 2.5, 3.3
Economic theory based	Input output Computable general equilibrium	M L	L M	P, C P, C, G, L	S M	L M	1.3, 2.3, 2.4, 3.2 1.3, 1.6, 2.3, 2.4, 2.5, 3.2,
Network based	Topology-based method Flow-based method	S, M L	M S	P, C, G, L P, C, G,L	S, M L	L L	1.3, 2.2, 2.3, 3.2, 3.3 1.3, 1.5, 1.6, 2.2, 2.3, 2.4, 2.5, 2.6, 3.2, 3.3, 3.4
Others	HHM HLA based PN DCST BN	L L M, L M, L M, L	S L M S S	P, C, L P, C, G, L P P, C, G, L P, C, G, L	S L M, L M	S S M S S	1.6, 2.5, 3.3 1.1–1.6, 2.1–2.6, 3.1–3.4 1.3, 1.6, 2.3, 2.4, 2.5, 3.3, 3.4 1.3, 1.6, 2.3, 2.4, 2.5, 2.6, 3.3, 3.4 1.3, 1.5, 1.6, 2.3–2.6, 3.3, 3.4

- Flow-based methods: nodes and edges representing the infrastructure topologies have the capacities to produce, load and deliver service (Network-based approach).
 - Large amount of data required and confidentiality issues
 - All types of interdependency: Physical, Cyber, Geo, Logical
 - Highest potential to model all the resilience capabilities: robustness, absorption, restoration

DMCI modelling approach Key features

- Propagation of inoperability and demand variations throughout nodes within and between (inter)dependent CIs.
- Quantification of functional (physical) and logical dependencies based on service demand and service capacity parameters
- Continuous simulation

DMCI modelling approach Assessment of Service disruption and loss

DMCI modelling approach Determining the state of the node

POLITECNICO DI MILANO

6

DMCI Modularization Modular specification of the Vulnerable Node

POLITECNICO DI MILANO

7

DMCI application to heterogeneous CI Example – Electricity grid

- Milan metropolitan area
- Multiple failures at distribution grid level
- Available spare capacity in transformation cabins and by grid balancing

DMCI application to heterogeneous CI Example – Electricity grid

- Milan metropolitan area
- Multiple failures on the **Distribution Grid**
- Available spare capacity in transformation cabins and by grid balancing

DMCI Software tool Integration in GR²ASP Platform

🖾 DMCI 🛛 🗙 📃									
← → C 🗋 localhost/dmci/								: ☆ =	Ξ
👯 App 🔱 Google 🕒 Polimi									
Security Techno	ogy Assessme	ent Unit <i>S7Auet</i>				DMC	Linguage		
🗠 🔟 🔳 🖬 🛸 🤣 🚺 🔍	🔍 4 🕨 🚼 📴 🖷 🔳	USER: demo	PROJECT: demo					0 📐	
Turbigo 202	Buscate Busto Garolfo SP32 SP12 SP32 Casorezz	SP109 SP149 SP149 SP149 Valvago	Passirata Arese 4. TEFRAZZINO Rho MAZZO	Bollate Connar Baranzate 1,68 Bitt	no 66 91 1 Sesto San 62 Gicvinni Bicgcc/ 164	Interdependencies M	Modeller	×	
No layer selected	Cuggiono Mesero Santo	Arluno Bogerotto Co Vulnerable node attribute	133 70 Proprint Prop	129	54 555NANO 64 54 145 66 51 205 240 213	Open Projects:	Create project		N 1- P.
E	Narcallo con Casone	Node ID:	147	- Integer Value	ALL UN 145 LAM BRA E18		Delete project		A
E 🗹 Lines_threat	Sopra Ticino Magegta	Node description:	- 17	- text	Ilove		Import project		
Points_threat	SSII 54	Geometry type:	Lines		OSTINESE FOR AUNI		\		4
	Robecco Sul	CI Type:	Transport	~	190 29 169 L				is
	Naviglio	Maximum canacity:	16000	- Linits		+ Manage proj			
	S526	Integrity modulation:	0,0,0.5,1	Hours [,,,]	1211 62104 Sad	- Simulation environment			2
Zoom to Layer Remove Layer	Abbiat	Initial integrity:	1	-[01]					?a
Network editor	PIEMONIE	Initial inoperability:	0	-[01]		Simulation st	ep:	0.01	
+ Editor nodes	LOMBARDIA	Node's total inoperability as	: sum 👻	- boolean	73 Ope1.96 116	Minimum time	e(h):	0	1
	Cassolnovo	Strandard Demand			SPIE SPIE	Maximum tim	ie(h):	23	er
-+ Editor threats	SS4	Notes:			Pieve Emanune		Check model para	meters	
Manage interdependencies					52. SP.112 Ca		Run model		X
		+ Internal functional interdependecies			Siziano Landr SP50	-+ Report and d		-	
Parona			Save	Delete feature	SP205			asale	5
localhost/dmci/#		"cino		$\sim V (-1)$	SP109	Cas	Selle Lurani Sant'an	Gegnala un erroße fiellia Albudida	19

POLITECNICO DI MILANO

10

- Modelling and simulation of interdependent CI systems
- DMCI modelling approach and characteristics
- DMCI modular implementation and SW tool
- DMCI application in the context of a Regional CIP-R programme
 - System modelling and Data collection
 - Vital Node Analysis
 - Characterisation of CI system resilience
 - Collaborative response planning and assessment
- Conclusions

Integrated Programme for CI Protection and Resilience of (PReSIC)

Developing a collaborative environment and shared supporting tools as a regional resilience capability

- Inventory of CIs nodes and interdependency analysis (all-hazard approach)
- Identification of criteria and protocols for enhanced information sharing and operational coordination
 - Scenario-based
 - Interdependency-based
- Large exercises
 - Snowfall event (2012)
 - Blackout (2014)
- Support to EXPO2015 preparedness strategy
- Specification of requirements for a prototype **NEO platform** to support collaborative operations (MATRICS project)

The PPP agreement involves **14** operators in the **Energy and Transportation** sectors and the Regional Civil Protection System

- Railways ROVIARIA ITALIANA FERROVIENORD АТМ Metro lines ZIENDA TRASPORTI MILANESI S.a.A o al Serio international Airports S.A.C.B.O. S.P.A. autostrade per l'italia Highways milanotangenziali SATAP ...
- National and regional road networks

Gas

- Power generation, transmission and distribution
 - SNAM aza <u>*Enel</u> Terna

DMCI Application in PReSIC context System modelling

- Comprises 207 vulnerable nodes and CI from 5 different categories
- Characterisation of vulnerable nodes by means of:
 - PReSIC program and other data gathered from operators
 - Regional data from the Civil Protection system
 - Public data and theoretical models

Resilience profile of vulnerable nodes:

- Specific Thematic Task Force for different scenarios
 - Heavy weather events
 - Electrical Blackouts
- Template for data collection
- Direct and indirect impact assessment
- Identification and planning of mitigation and response strategies

• **Elementary disruption scenarios**: each one triggered by a threat impacting on a single node at a time and blocking it for the entire simulation time-window (e.g. 36 hours)

- Simulation Setting:
 - Target nodes: Beltways (#1, 3, 4); Highways (#13, 14); Malpensa Airport (#113); Railways (#156, 157)
- Reducing nodes' response time (from 10% up to 50%)

Simultaneously in clusters of high agility nodes

- \rightarrow up to 11% impact reduction at system level, but with early saturation effect
- Exploiting replaceable services (roads vs railways substitution)
 → Local reductions in disservice: 22% in roads and highways; 60% at Malpensa

- Flow-based approaches (Ouyang, 2014)
 - High potential for comprehensive resilience analysis
 - Data availability is an issue
- DMCI Functional modelling offers a good trade-off
 - Applicable to heterogeneous CI systems
 - Limited confidential data required (typical info sharing level within PPPs)
- DMCI tool features
 - Modular structure
 - Web GUI, GIS integration, import/export in MSExcel[™] and Matlab®
- DMCI application portfolio
 - Vital Node Analysis
 - Resilience Characterisation
 - Collaborative response planning
 - Extension towards real time decision support

> POLITECNICO DI MILANO

2nd ERNCIP Conference

"Dissemination, Exploitation and New Initiatives"

April 16nd and 17th, 2015

European Commission Charlemagne Building, JENK Room Rue de la Loi 170, 1040 Brussels

Joint Research Centre

Prof. Paolo Trucco, PhD

Politecnico di Milano Via Lambruschini 4/b - building 26/B - 20156 Milan (Italy)

e-mail: paolo.trucco@polimi.it website:www.ssrm.polimi.it