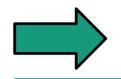

IMPORTANT TOPICS TG: RESISTANCE OF STRUCTURES TO EXPLOSION EFFECTS

Regulations and Testing Methods

What is: Resistance of structures to explosion effects

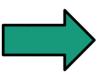

Starting Point

ERNCIP goals:

- ERNCIP aims at providing a framework within which experimental facilities and laboratories will share knowledge and expertise in order to harmonize test protocols throughout Europe, leading to better protection of critical infrastructures against all types of threats and hazards.
- Our mission is to foster the emergence of innovative, qualified, efficient and competitive security solutions, through the networking of European experimental capabilities

First Questions

In which field (sub topic) of structural protection against/ to explosives / explosions / explosive effects the group will try to support the goal


What do we like to investigate / harmonize

in general and in a first step?

Structural Resistance against Explosive Loading Status

- In contrast to other topics relatively small group of experts
- Group members represents also competitors for testing, but have common sense in testing fundamentals
- Number of regulations very limited
 - EN 1991-7: Action on structures → Explosion in informative Annex
 - FEMA 426, 427, 428, 429, 430 and 452 → non- EU
 - Several national documents like e.g.
 - PAS (Public Available Specification)
 - KTA Guideline (Guideline for nuclear power plants) "external loads"
- Regulations for material testing only available for glass

Integral design approach defining loading and resistance not available in building sector

IDENTIFIED TOPICS RESISTANCE OF STRUCTURES TO EXPLOSION EFFECTS

Starting points for Improvements:

Creation of Regulations for design concept

- Framework for extended risk assessment
 Definition of appropriate design
- strategies and methods
- Common (harmonized) safety concept with comparable reliability

Increase Resistance against Explosions

IDENTIFIED TOPICS RESISTANCE OF STRUCTURES TO EXPLOSION EFFECTS

Starting points for Improvements:

Creation of Regulations for design concept

Modification

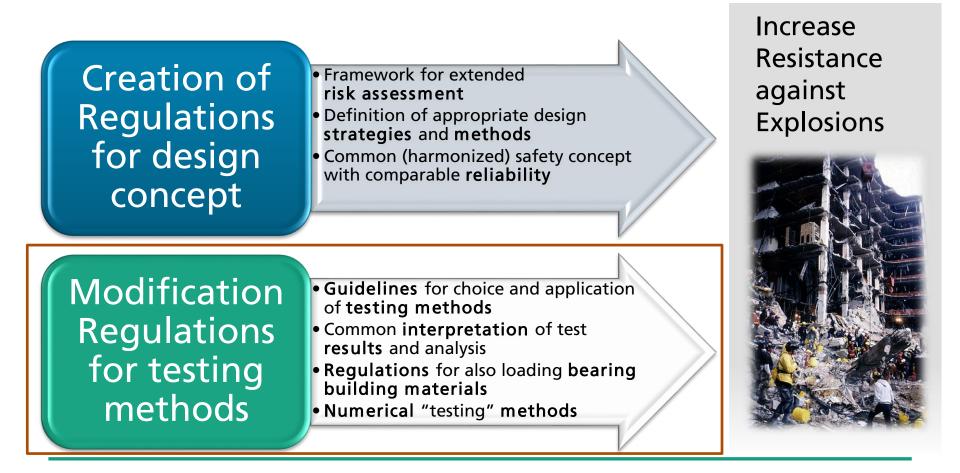
Regulations

for testing

methods

Framework for extended risk assessment
Definition of appropriate design strategies and methods

 Common (harmonized) safety concept with comparable reliability Increase Resistance against Explosions

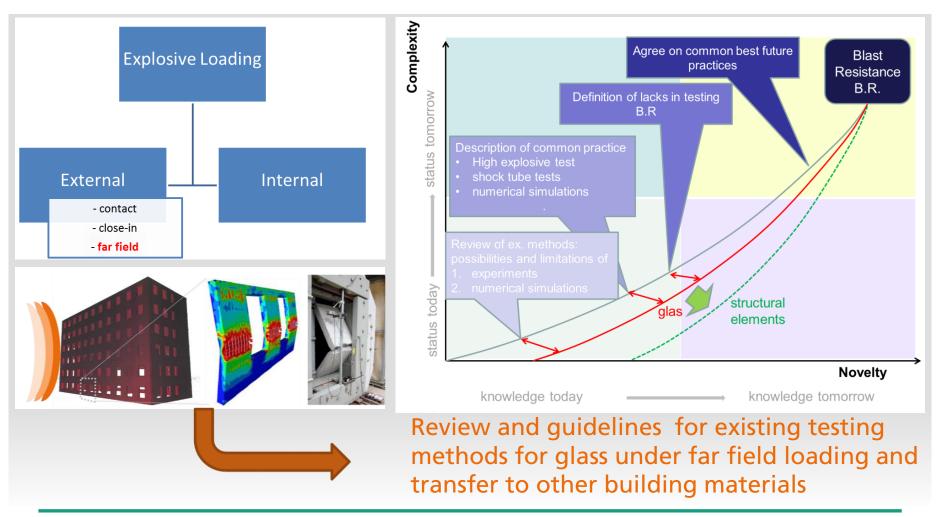


© Fraunhofer EMI

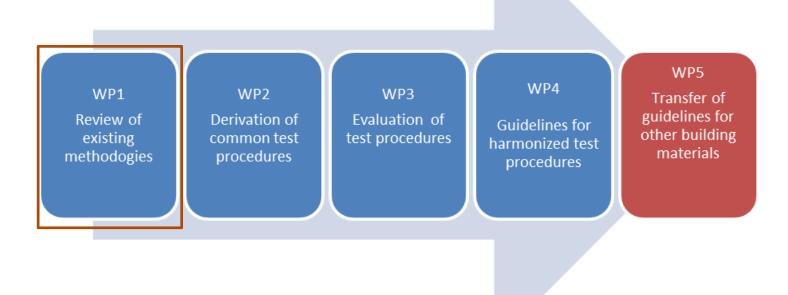
 Guidelines for choice and application of testing methods

- Common interpretation of test results and analysis
- Regulations for also loading bearing building materials
- Numerical "testing" methods

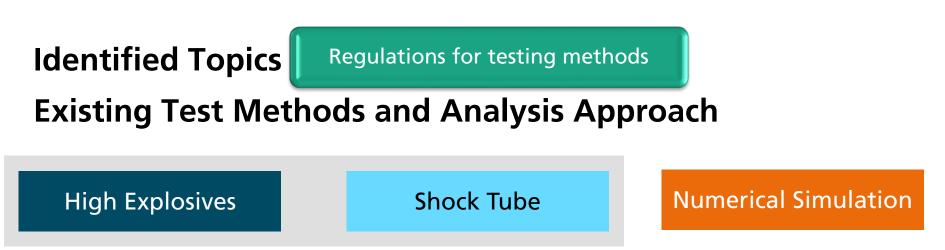
IDENTIFIED TOPICS RESISTANCE OF STRUCTURES TO EXPLOSION EFFECTS



Identified Topics


Regulations for testing methods

Types of Explosive Loading and WP Approach



Work Programm Regulations for testing methods Structure : (completed and accepted December 2012)

In order to assess and choose testing methods (especially as a CI-operator) knowledge about:

- Properties formation and propagation of shock waves
- The impact of shock waves on the test specimen
- Possibilities and limitations in measurements
- The interpretation of measurements and test results

will be presented in a guideline document

Identified Topics

Existing Test Methods possible Pro's and Cons's

High Explosives	Shock Tube	Numerical Simulation		
 most appropriate loading profile minor limitations in test specimen size 	 reproducibility of loading amplitude less disturbance in measurements 	 + application range for arbitrary loadings + cost effectiveness 		
 Deviation in loading amplitude Consideration of clearing effects and robust 	 Limitations to end section size Consideration of possible reflections 	 Derivation of dynamic material properties Validation required 		
measurements	WP1 Review of existing methodogies + more detailed desirable	d design regulation very		

Fraunhofer 🖉

Work Programm Deliverables

Regulations for testing methods

Resistance of structures to explosion effects: Review report of testing methods

> ERNCIP thematic area Resistance of structures to explosion effects Deliverable D1

Kevin C., Ans van Doormaal, Christof Haberacker, Götz Hüsken, Martin Larcher, Arja Saarenheimo, George Solomos, Alexander Stolz, Laurent Thamie, Georgios Valsamos

© Fraunhofer EMI

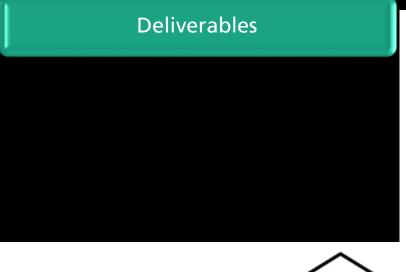
December 2013

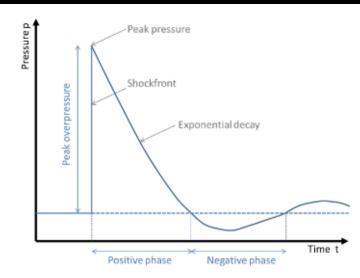
Deliverables

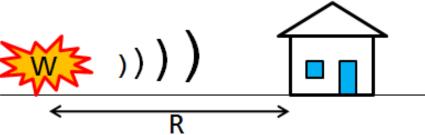
TRAFFIC LIGHT PROTOCOL 'GREEN'

4

Table of contents


1	S	cenario definitions	7				
	1.1	Effects of high-explosive charges	7				
	1.2	TNT Equivalence					
	1.3	Improvised explosive devices (IED)	9				
	1.4	IED Location					
	1.5	IED threats	s				
	1.6	List of references	10				
2	s	hock waves	11				
	2.1	Properties of shock waves	11				
	2.:	1.1 Sources and characteristics of shock waves	11				
	2.:	1.2 Formation of shock waves	13				
	2.:	1.3 Loading scenarios of shock waves	14				
		1.4 Characterisation of shock waves in standards					
		Formation and propagation of shock waves					
		2.1 Shock waves caused by high explosives					
		2.2 Shock waves in shock tubes					
		The impact of shock waves on a specimen					
	2.3	3.1 High explosives	30				


з Measurements ... 3.1 Overview of instrumentation 37 3.2 Detailed issues.... 3.2.1 Pressure measurements...... . 39 3.2.2 Assessment of hazard... 39 3.2.3 Post-test pictures..... 3.2.4 Videos 41 3.3 List of references .. 42 4 4.2.1 Recommendations..... . 46 4.3 List of references 46 Review of numerical methods.. . 47 5 5.1 Implicit and explicit FEM 47 5.1.1 Numerical schemes 5.1.2 Solvers 48 5.1.3 Synthesis... . 50


TRAFFIC LIGHT PROTOCOL 'GREEN'

erncip

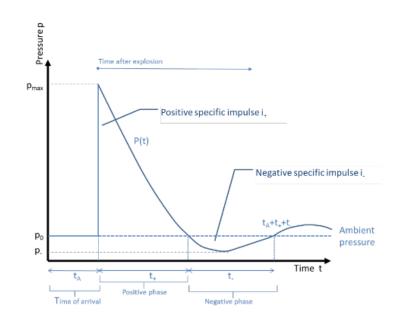

Page 5



Figure 7: Description of a blast wave as an ideal pressure-time history according to the European standard EN 13123-1

Deliverables

Figure 8: Typical aren est set-up for rating window systems.

maximum impulse **P**2 P1 impulse in Pas V in mm P4 P3 x in mm

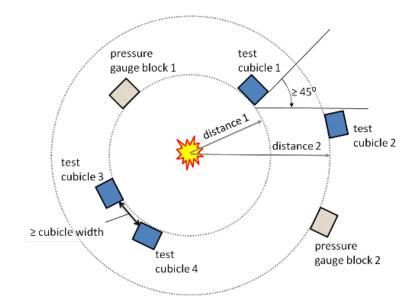


Figure 9: Typical arena test set-up

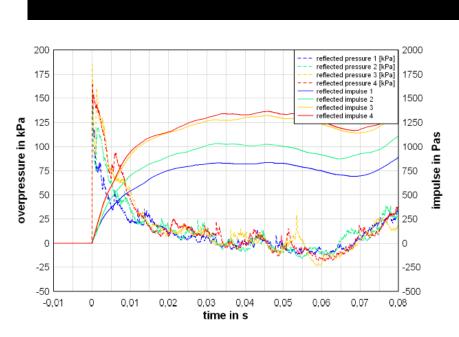
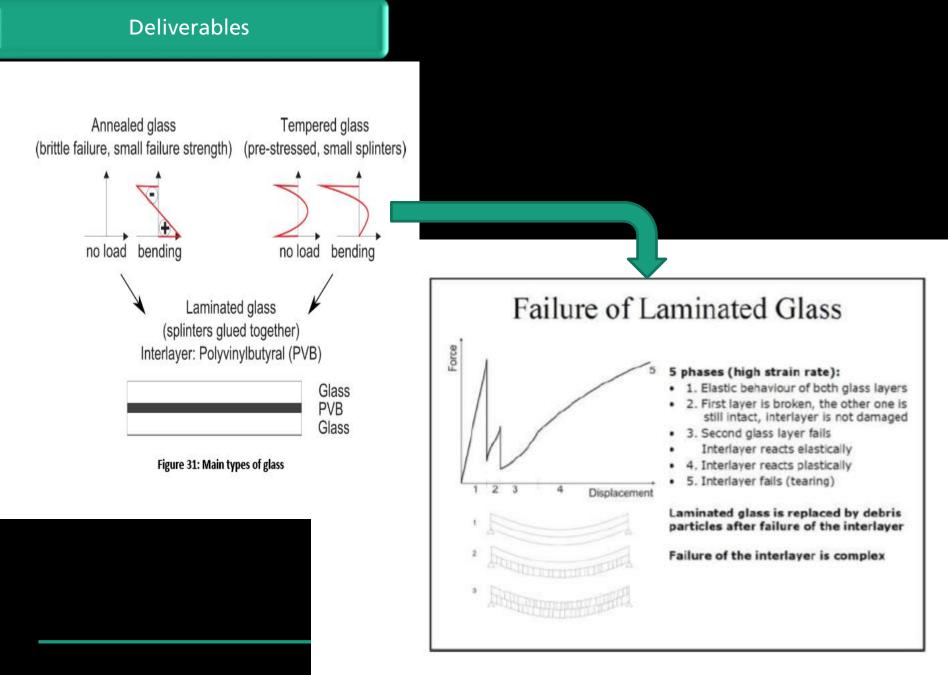



Figure 24: Pressure distribution on a test surface

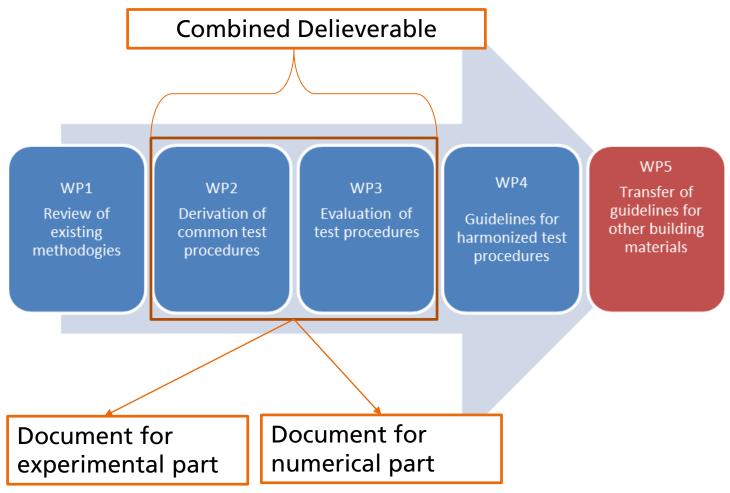
© Fraunhofer EMI

Figure 32: Phases of failure of laminated glass

Deliverables

Resistance of structures to explosion effects: Review report of testing methods

- Reports gives comprehensive overview over
 - Theoretical background
 - Testing basics
 - Expectable test results and interpretation
 - Verification and validation of results


Ready to use for costumers, manufacturer, and building planners.

- Group members which also compete for appointments defined common fundamentals available for end-users!
- Document informs potential costumer in advance about:
 - What to expect
 - How do deal with data and results

Work Programm

Delieverables

Deliverable 2: Experimental Part

TRAFFIC LIGHT PROTOCOL 'GREEN'

European Reference Network for Critical Infrastructure Protection (ERNCIP) thematic group

Work package 2

A comparison of existing standards for testing blast-resistant glazing and windows

Thematic group:

Resistance of structures to explosion effects

Coordinator: Dr Alexander Stolz, Fraunhofer Institute for High-Speed Dynamics, Ernst Mach Institute (EMI)

Deputy Coordinator: Christof Haberacker, Bundeswehr Technical Centre for Protective and Special Technologies (WTD 52) TRAFFIC LIGHT PROTOCOL 'GREEN'

European Reference Network for Critical Infrastructure Protection (ERNCIP) thematic group

Numerical simulations for classification of blast-loaded laminated glass: possibilities, limitations and recommendations

Thematic group:

Resistance of structures to explosion effects

Coordinator: Dr Alexander Stolz, Fraunhofer Institute for High-Speed Dynamics, Ernst Mach Institute (EMI) TRAFFIC LIGHT PROTOCOL 'GREEN'

Table 19: Comparison of standards for testing blast resistance of glazing.

Item	EN 13541:2012	EN 13123-1:2001/	EN 13123-2:2004/	GSA-TS01:2003	ASTM F 1642:2004	ISO 16933:2007	ISO 16934:2007
		EN 13124-1:2001	EN 13124-2:2004				
Application	Glass	Windows, doors, shutters	Windows, doors, shutters	Windows	Glass, windows	Glass, windows	Glass, windows
Test method	Shock tube	Shock tube	Arena test	Shock-tube or arena test	Shock-tube or arena test	Arena test	Shock tube
Standard loading	Large charge VBIED	Large charge VBIED	Small charge PBIED	Large charge VBIED	Small PBIED and large charge VBIED	Small PBIED and large charge VBIED	Large charge VBIED
User defined loading	No	No	No	Yes	Yes	No	Yes without certification
Petrochemical loading	No	No	No	No	No	No	No
Sample dimension	Fixed, vision size 1 000 × 800 mm	User defined	User defined	$1650 \times 1200 \text{ mm}$ specified other size are permitted	User defined	Fixed, vision size 1 000 × 800 mm	Fixed, vision size 1 000 × 800 mm
Number of samples	3	1	1	1	Minimum 3	Minimum 3	Minimum 3
Tests of partially opened windows or doors	No	No	No	No	No	No	No
Testing glazed facades	No	No	No	No	No	No	No
Mounting of samples	Well defined	General description only	General description only	Outline description only	Outline description only	Well defined for glass; general description for windows	Well defined for glass; general description for windows
Number of pres. transducers	2	Not specified; at least 1	Not specified	\geq 2 outside; 1 inside	Shock tube: 3 Arena test: 4	≥ 3	\geq 1; not specified

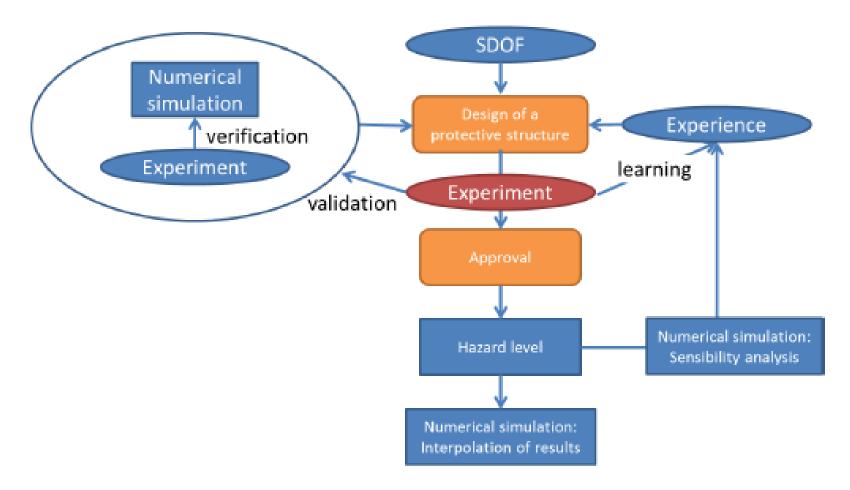
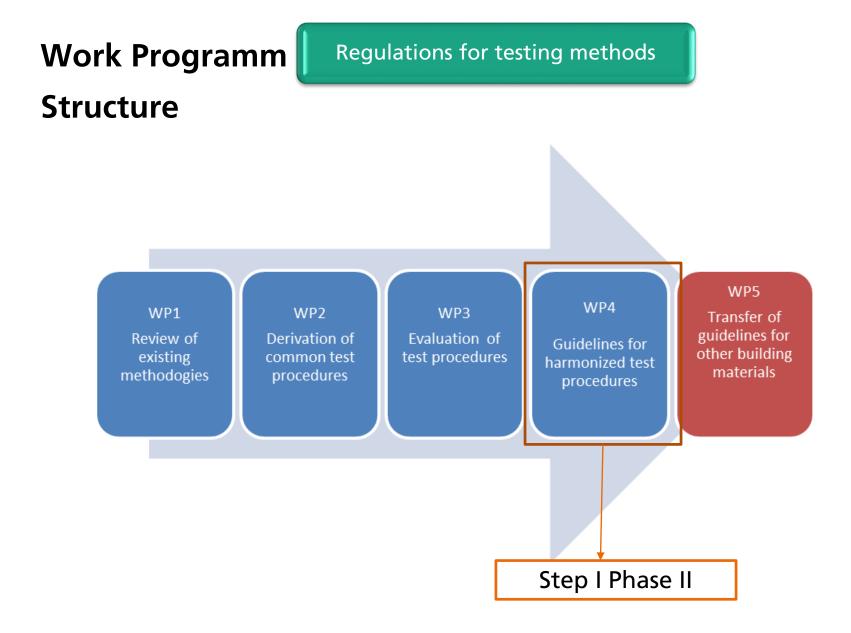
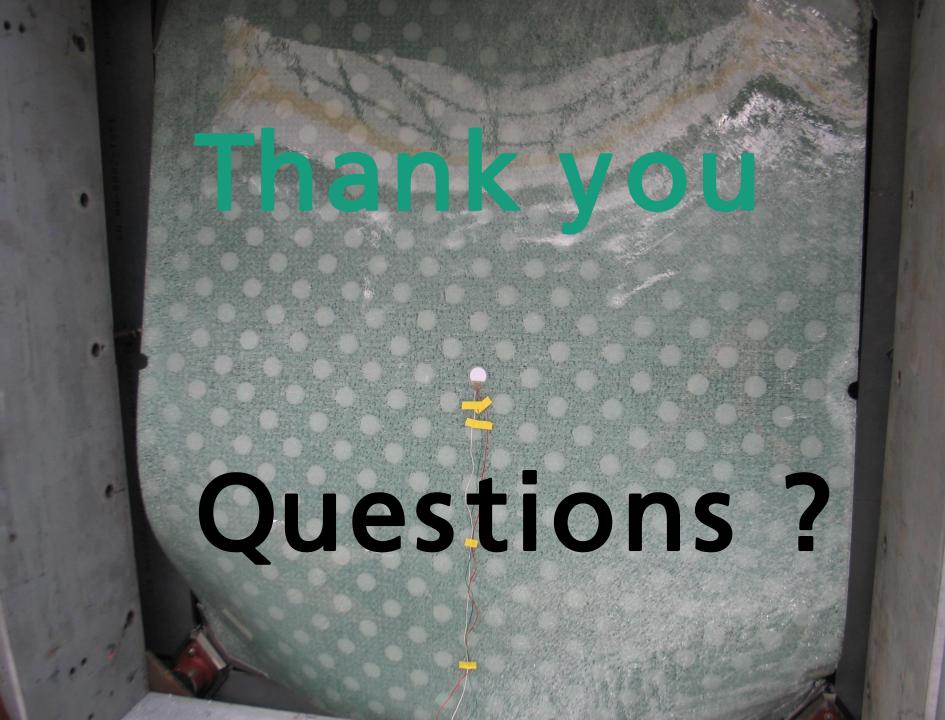



Figure 1: Interaction between numerical simulations and experiments for the approval of protective structures using laminated glass


Work Programm Outlook

Objectives

2.1 Recommendations to the EU standardisation community for the future development of the existing European norms for testing the resistance of windows and glazed facades to explosive effects (October 2015).

2.2 A report/draft proposal that provides the basic elements to launch the appropriate standardisation process for shock tube considering glass panes and windows.

