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Critical infrastructures 
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What? 

Critical

infrastructures 

(CIs)
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Statement (obvious):
Critical Infrastructures are 

(Engineered) Complex Systems
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Complex (technical) systems

• Network of many interacting components
• Components of heterogeneous type
• Hierarchy of subsystems
• Interactions across multiple scales of space and/or time

Dependences (uni-directional) and 
interdependences (bi-directional)
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Characteristics of complex systems

[New England Complex Systems Institute, 2005]
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Critical infrastructures = 

complex systems 

What? 
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Critical Infrastructures: complexity

• Structural complexity
• Heterogeneity

• Scale and dimensionality 
(interdependences)

• Decomposability

• Dynamic complexity
• Emergent behavior

• Adaptive learning

• Evolution and growth mechanisms
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Critical Infrastructures: structural complexity 

• Heterogeneity of components across different technological domains 
due to increased integration among systems.

� Physical hard components (road, railways, pipelines, …)

� Soft components (SCADA, information and telecommunication 
systems)

� Human and organizational components
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Critical Infrastructures: structural complexity

21

Example of 
infrastructures 
interdependencies
[Rinaldi et al. 2001]

(systems of systems )
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Critical Infrastructures: structural complexity

Examples of nth-order interdependencies and effects.
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Critical Infrastructures: dynamic complexity
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Emergent behavior refers to actions of a system as a whole that are not 
simple combinations of the actions of the individual constituents of the 
system. It emerges in response to changes in the environmental and 
operational conditions of parts of the system. 

Examples:
• Internet: social bookmarking leads to an emergent effect in which 

information resources are reorganized according to users priorities.

• Electric power grids: local failures can evolve into unexpected cascade 
failure patterns with transnational, cross-industry effects.

• Smart grids: large amount of information exchanged within technologies at 
a period of high electricity demand can lead to a vulnerable condition of 
the system.

• Road transportation congestion: slow movement of the traffic.
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Critical Infrastructures: dynamic complexity 

Emergent behavior: Traffic 

It is not due to specific actions of individual vehicles � no individual vehicle 
plays a critical role. 
If some subset of the vehicles acted differently in their local actions (within 
certain boundaries), the global effect of slow-moving traffic would be unchanged.

It arises from the cumulative effects of the actions and interactions of all 
individual vehicles. The global effects depend on the general activities of 
sufficiently many of them, within the context of that highway.

Global system property that emerges: slow movement of the traffic
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The problem
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What problem? 

cascading failurescascading failures
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Italian Blackout, September 28, 2003
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Relevance of the problem: large consequence

Italian Blackout, September 28, 2003
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Relevance of the problem: non-negligible probabilit y

“heavy 
tail” region

Cascading failures 

are not ‘rare’!

(Weron et al., 2006)

e��
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Relevance of the problem

Cascading 
failures

Cascading 
failures

Large 
consequence

Large 
consequence

Non-negligible 
probability

Non-negligible 
probability

Critical infrastructure protection and 
resilience (CIPR)

Critical infrastructure protection and 
resilience (CIPR)
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Resilience

Resilience : ability of the system to sustain or restore its basic 
functionality following a risk source or event (even unknown events) 
[SRA, Glossary, Aven, Sept. 2014]. It includes technical (physical), 
organizational, social and economic aspects [Bruneau et al. 2003]
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Features of system’s resilience
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Vulnerability and resilience
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Oil & Gas
Communica-

tions
Water Transp. Emergency

Services
Electric

Power

(Networked) CIs protection

Safety Safety Vulnerability Vulnerability 

Dependency Dependency Structural 
complexity 
Structural 
complexity 

Dynamic 
complexity 
Dynamic 

complexity 

Resilience Resilience 

Protection and resilience of critical infrastructur es: 
scientific and technical issues
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CI vulnerability 
assessment

CI resilience 
assessment

Optimal design
Optimal resilience

Modelling & 
Simulation

Data/event-
driven study

Protection and resilience of critical infrastructur es: 
ways to go
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Resilience of critical infrastructures

Cascading 
failure model

System 
restoration 

model

mitigation

Optimal design 
for cascading 

failure 
mitigation resilience

Optimal 
restoration for 

system 
resilience

• Multi-objective 
evolutionary 
optimization, 
e.g., NSGA-II, 
NSBDE…

• Network 
theory-based 

• Physical 
(power) flow

• Flow

• Heuristic searching 
and project 
scheduling

• Mixed integer 
programming
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System analysis:

- hazards and threats identification 

- physical and logical structure identification

- dependencies and interdependences 
identification and modeling

- dynamic analysis (cascading failures) 

Quantification of 
system safety 

indicators

Identification of 
critical elements

Application for system improvements (optimization):

- design 

- operation

- interdiction/protection
W. Kroger and E. Zio, “Vulnerable 

Systems”, Springer, 2011

Protection and resilience of critical infrastructur es: 
the analysis
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Modeling for critical infrastructures protection 
and resilience

e.g., Agent Based 
Modeling and 
Simulation, System 
Dynamic Model, 
Economic-Based 
Approaches, …

e.g., Topology-
based approaches

e.g., Flow-based 
approaches 
(maximum flow 
model, …)

Phenomenological/
Functional 
methods

Structural/
Topological 

methods

Flow
methods

e.g., Risk Analysis 
(fault/event trees, 
…), Probabilistic 
Modeling (Markov 
Chains, Bayesian 
network, …)

Logical 
methods

Vulnerability and Resilience
assessment of CIs
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Modeling for critical infrastructures protection and resilience: 

the Dual Analysis

Direct Problem

Evaluating Global 

Indicators

Detail

• Critical Infrastructures are engineered complex systems: structure + failure 

dynamics + resilience process

Computational cost

Aggregation 

Challenge

Inverse Problem

Identifying 

Vulnerabilities at 

the Components 

Level

Disaggregation 

Challenge

• Critical Infrastructures modeling: topological, flow, phenomenological, logic 
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1) System(-of-systems) representation
2) System(-of-systems) modeling
3) System-(of-systems) simulation with 

uncertainty propagation

Uncertainty:
• Aleatory
• Epistemic

Systems (of systems) modeling: The issues
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CI Vulnerability Assessment



48

System susceptibility to intentional hazards:

Criteria identification by hierarchical modeling
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System susceptibility to intentional hazards:

Evaluation by Sorting / Classification

System S1

System S2

…

System S9

Sorting / Classification model
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CI Cascading Failures Modeling
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Spreading rules:

• fixed load (5%) transferred after a failure to neighboring nodes

• fixed load, I, (10%) transferred after a failure to interdependent nodes
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Propagation 

follows until no 

more working 
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Initiating event: uniform disturbance (10%)

Modeling for critical infrastructures protection and resilience
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Modeling for critical infrastructures protection and resilience
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Technical result: failure mitigation by adding redundant links at 
relatively light loading

The methods & 
application

02/02/2015

Methodological/Conceptual result: results are consistent 
between the ML and OPA models: topologically robust network is 
physically robust

Optimal design for cascading failure mitigation (top ology)

Application to the FPTN400
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CI Resilience Assessment
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(Nozick et al., 2005)

• With the dynamics of system states:
(on the buffers and the links)

�� � �� � 	
 � �

� � � � �


• Taking into consideration the 
constraints/capacities of nodes and links

• The outputs of system are states of users:

� � ��, ���, ���, ���, ���

→ ��� , ��� , ��� , ���

• Solve the optimization problem in order to ensure the users demands:

� � ������� ��  ��� � ��� ���  ��� � ��� ���  ��� � ���|��� � ���  ��� 	|#,

where ��� , ��� , ��� , ��� are the weighting parameters of the  users.

Case study: Gas-Power interconnected infrastructures

Integration of Control Theory and Reliability Theory 
for the Resilience Analysis of Complex Systems

Gas distribution system 

Power 
system 
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Resilience region
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Case study: Gas-Power interconnected infrastructures
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57The methods & 
application

(a) Scheduling algorithm (b) MIP

02/02/2015

Technical result: similar restoration plans by heuristic 
scheduling algorithm & MIP

Optimal restoration for system resilience: 
Application to the FPTN400



58

Content

58

• Critical infrastructures
• Modeling reasons
• Modeling issues
• Modeling methods
• Conclusions



59

Conclusions
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Structural complexity : heterogeneity, dimensionality, connectivity

Dynamic complexity : emergent behavior

Uncertainty : aleatory, epistemic, perfect storms, black swans

The complexity of analyzing the Vulnerability and Resilience of

Critical Infrastructures for their Protection
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Complexity
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time

complexity, reliability

Complexity and reliability
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Complexity

?

Surprises

Complexity and vulnerability/risk/resilience: surprises
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System analysis:

- hazards and threats identification 

- physical and logical structure identification

- dependencies and interdependences 
identification and modeling

- failure/resilience dynamics analysis (cascades) 

Quantification of 
system safety 

indicators

Identification 
of critical 
elements

Application for system improvements:

- design 

- operation

- interdiction/protection

W. Kroger and E. Zio, “Vulnerable 

Systems”, Springer, 2011

Systems of systems

Modeling 

Critical 

Infrastructures

Phenomenological
Logical

Topological

APPROACHES

System 
indicators

Critical 
elements

OUTPUTS

Flow

dynamics

Modeling for critical infrastructures protection and resilience
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1. System(-of-systems) representation
2. System(-of-systems) modeling
3. System(-of-systems) behavior quantification (by 

simulation) accounting for the presence of uncertainty 
(aleatory and epistemic)

Object Analysis Why

Conclusions: Modeling for critical infrastructures 
protection and resilience
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Modeling, Simulation, Optimization and Computationa l Challenges

Detail Computational cost

Integrated Approach

Topological

Logic

Detail Computational cost

Flow dynamics
Detail Computational cost

Structural Complexity + Dynamic Complexity

Uncertainty

Detail Computational cost

Phenomenological

The complexity of analyzing the Vulnerability and Resilience of 

Critical Infrastructures


